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Adaptive Manifolds for Real-Time High-Dimensional Filtering

Eduardo S. L. Gastal∗ Manuel M. Oliveira†

Instituto de Informática – UFRGS

(a) Filtering using geometric information (b) Edge-aware smoothing (c) Non-local means denoising

Figure 1: Examples of filtering results produced with our adaptive-manifold filter. (a) Filtering (performed in 8-D) of a noisy undersampled
image generated using path tracing. The split rendition compares the input (bottom right) and the filtered result (top left). Note the smoothness
of the shading. (b) Edge-aware filtering of color images (performed in 5-D) showing large regions smoothed out, and sharp edges preserved.
(c) Denoising of natural images using non-local-means (performed in 27-D). Notice the noise reduction while retaining fine details.

Abstract

We present a technique for performing high-dimensional filtering of
images and videos in real time. Our approach produces high-quality
results and accelerates filtering by computing the filter’s response at
a reduced set of sampling points, and using these for interpolation
at all N input pixels. We show that for a proper choice of these
sampling points, the total cost of the filtering operation is linear
both in N and in the dimension d of the space in which the filter
operates. As such, ours is the first high-dimensional filter with such
a complexity. We present formal derivations for the equations that
define our filter, as well as for an algorithm to compute the sam-
pling points. This provides a sound theoretical justification for our
method and for its properties. The resulting filter is quite flexible,
being capable of producing responses that approximate either stan-
dard Gaussian, bilateral, or non-local-means filters. Such flexibility
also allows us to demonstrate the first hybrid Euclidean-geodesic
filter that runs in a single pass. Our filter is faster and requires
less memory than previous approaches, being able to process a 10-
Megapixel full-color image at 50 fps on modern GPUs. We illus-
trate the effectiveness of our approach by performing a variety of
tasks ranging from edge-aware color filtering in 5-D, noise reduc-
tion (using up to 147 dimensions), single-pass hybrid Euclidean-
geodesic filtering, and detail enhancement, among others.
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1 Introduction

High-dimensional filtering has recently received significant atten-
tion in the image processing, computer vision, and computational
photography communities. Such filters are fundamental building
blocks for several applications, including tone mapping [Durand
and Dorsey 2002], denoising [Buades et al. 2005], detail manip-
ulation [Bae et al. 2006; Fattal et al. 2007], upsampling [Kopf
et al. 2007], spatio-temporal filtering [Bennett and McMillan 2005;
Richardt et al. 2010], photon-map filtering [Weber et al. 2004;
Bauszat et al. 2011], alpha matting [Gastal and Oliveira 2010; He
et al. 2011], recoloring [Chen et al. 2007], and stylization [Win-
nemöller et al. 2006]. Due to their wide applicability, several high-
dimensional filters have been proposed. The most popular one
is the bilateral filter [Aurich and Weule 1995; Smith and Brady
1997; Tomasi and Manduchi 1998], which works by weight av-
eraging the colors of neighbor pixels based on their distances in
image and color space. For 2-D RGB images, it operates in a 5-D
space [Barash 2002], and a naı̈ve implementation is too slow for
many practical uses. As a result, several acceleration techniques
have been suggested. While they clearly improve performance,
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these solutions natively only handle grayscale images [Durand and
Dorsey 2002; Chen et al. 2007; Yang et al. 2009], are still not
sufficiently fast for real-time applications [Paris and Durand 2009;
Adams et al. 2009; Adams et al. 2010], or may introduce artifacts
by not using true Euclidean distances [He et al. 2010].

We present a new approach for efficiently performing high-quality
high-dimensional filtering that avoids the shortcomings found in
previous techniques. Our solution accelerates filtering by evalu-
ating the filter’s response on a reduced set of sampling points and
using these values to interpolate the filter’s response at all N in-
put pixels. We show that, given an appropriate choice of sampling
points, the image can be filtered in O(dNK) time, where d is the
dimension of the space in which the filter operates, andK is a value
independent of N and d. For color images, K typically varies from
3 to 15. Thus, the resulting filters are the first high-dimensional fil-
ters with linear cost both inN and in d. We present a derivation for
the equations that define our method, providing a solid theoretical
justification for the technique and for its properties. We also show
that the response of our filter can easily approximate either a stan-
dard Gaussian, a bilateral, or a non-local-means filter [Buades et al.
2005]. This kind of versatility has also been described by Adams
et al. [2009; 2010]. However, our filters are faster and require less
memory than previous approaches. For instance, we can “bilateral-
like” filter a 10-Megapixel full-color image in real time (50 fps) on
modern GPUs.

Figure 1 shows some filtering examples obtained using our tech-
nique. Figure 1(a) depicts the result of filtering indirect illumina-
tion from an undersampled scene, rendered with path tracing. The
filter works in an 8-D space, composed of two spatial dimensions
and six range dimensions (3-D scene position and normal vector).
Note the quality of the filtered image, despite the highly-noisy in-
put. Figure 1(b) shows an example of edge-aware smoothing of an
RGB color image (5-D space). Note how the skin of the model
has been smoothed out, while important high-frequency features
have been preserved (e.g., the rugged leaves on the model’s head).
The filtered image maintains the artistic integrity of the photograph.
Figure 1(c) shows the result of applying a non-local-means filter to
obtain a denoised version (bottom) of a corrupted image (top). For
this example, the affinity among pixels was computed using a 7×7-
pixel neighborhood, reduced through PCA to 25-D, plus two spatial
dimensions. Note how delicate features were correctly preserved.

The contributions of our work include:

• An efficient approach for performing high-dimensional filter-
ing. Our solution produces high-quality results, and is faster
and requires less memory than previous approaches (Section 4).
It is the first filter with linear complexity in both the number of
pixelsN , and in the dimension d of the space in which the filter
operates (Section 6.1);

• A theoretical justification for the method and for its properties,
by means of a formal derivation of the equations that define it
(Appendix A);

• An algorithm for hierarchically computing nonlinear manifolds
adapted to an input signal (Section 4);

• A mechanism for trading off accuracy and speed, which also
lends to a filter with outlier-suppression properties (Section 5);

• The first demonstration of a hybrid Euclidean-geodesic filter
that runs in a single pass (Section 8).

2 High-Dimensional Filtering

High-dimensional filters can be classified as Euclidean or geodesic,
according to how they compute distances between samples. The
main difference between the two groups is the filter behavior near

strong discontinuities (edges) in the signal. In general, Euclidean
filters allow for samples belonging to different sides of a discon-
tinuity to be combined, while geodesic filters do not. Thus, each
filter type provides optimal results for different applications. For
instance, Euclidean response is better suited for recoloring disjoint
elements in an image [Chen et al. 2007], while geodesic response is
optimal for adding colors to grayscale images [Levin et al. 2004].

Many geodesic filters were recently proposed [Farbman et al. 2008;
Fattal 2009; Gastal and Oliveira 2011]. In this paper, we focus on
efficiently performing filtering operations with Euclidean-like re-
sponse. However, given the flexibility of our approach, we also
demonstrate the first single-pass hybrid Euclidean-geodesic filter.

Notation Used in the Paper Let f : S ⊂ RdS →R ⊂ RdR be
a signal associating each point from its dS -dimensional spatial do-
main S to a value in its dR-dimensional rangeR. Examples of such
a signal include grayscale images (dS = 2, dR = 1), RGB color
images (dS = 2, dR = 3), RGB color videos (dS = 3, dR = 3),
and 3D tomographic images (dS = 3, dR = 1). For digital manip-
ulation, the domain S must be discretized. Thus, let {p1, . . . , pN}
be the set of N samples obtained by sampling S using a regular
grid. We refer to each pi as a pixel, even for signals with dS 6= 2.
We also adopt the abbreviated notation fi = f(pi), and generically
refer to fi as the color of pixel pi. Furthermore, let p̂i ∈ S × R
be the point in a d-dimensional space (d = dS + dR) with coordi-
nates given by the concatenation of the spatial coordinates pi ∈ S
and the range coordinates fi ∈ R. For example, in an RGB im-
age, a pixel pi = (xi, yi)

T with color value fi = (ri, gi, bi)
T has

p̂i = (xi, yi, ri, gi, bi)
T . This concatenation of coordinates will

also be denoted as p̂i = (pi, fi).

2.1 Euclidean Linear Filters

Linear filtering produces a new set of pixel colors as weighted av-
erages of the colors of the input pixels. The weights of this linear
combination are given by a function φ called the filter kernel. For
Euclidean filters, the weights decrease with the Euclidean distance.
Filtering a signal f with φ gives a new signal g:

gi =
∑
pj∈S

φ(p̂i − p̂j) fj

/∑
pj∈S

φ(p̂i − p̂j). (1)

Non-negative weights ensure that the linear combination is convex.
A common choice for φ is an axis-aligned Gaussian function:

φΣ(p̂i − p̂j) = exp

(
−1

2
(p̂i − p̂j)TΣ−1(p̂i − p̂j)

)
, (2)

where Σ is a d × d diagonal covariance matrix that controls, for
each dimension, how fast the weights decrease with distance.

If the signal f is an image, Eqs. (1-2) describe the standard bilat-
eral filter [Aurich and Weule 1995; Smith and Brady 1997; Tomasi
and Manduchi 1998]. A joint bilateral filter [Eisemann and Durand
2004; Petschnigg et al. 2004] can be obtained by taking the vec-
tors p̂i and p̂j from some image other than f (which may include
depth and normal images [Weber et al. 2004]). A non-local-means
filter [Buades et al. 2005] can be obtained by replacing p̂i and p̂j
with neighborhoods around the corresponding pixels. Other spa-
tial dimensions can also be taken into account, such as time in a
video-sequence [Bennett and McMillan 2005].

Naı̈vely evaluating Eq. (1) for N pixels requires O(dN2) opera-
tions, which is impractical for most applications. For this reason,
many acceleration techniques have been proposed in recent years.

For grayscale image filtering Durand and Dorsey [2002] linearly
interpolate several discretized range values, each filtered with a
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Figure 2: Our adaptive sampling versus standard linear sampling,
applied to a 1-D signal shown in blue. (a) Our adaptive manifolds
adjust themselves to the signal in high-dimensional space.

Gaussian kernel in the frequency domain. Porikli [2008] uses
summed-area tables to filter each intensity level. Yang et al. [2009]
push the idea further, and avoid representing the entire filtering
space. Since the time complexity of these methods grows expo-
nentially with dR, they can only be applied to grayscale images.

For color image filtering Paris and Durand [2009] use a 5-D bi-
lateral grid and perform filtering by downsampling, which makes
Eq. (1) tractable for kernels φΣ with large support. For 3-D
(grayscale) bilateral filtering, this technique has been shown to
achieve real-time performance on GPUs [Chen et al. 2007]. Pham
and Vliet [2005] approximate Eq. (1) for small kernels as a separa-
ble operation, and apply it to video preprocessing.

For higher-dimensional filtering Adams et al. [2009] use a kd-
tree to sparsely gather the filter response. Adams et al. [2010] use
a permutohedral lattice to tessellate the high-dimensional space us-
ing uniform simplicies, and a hash table to store pixel colors. Other
approaches, such as the guided filter [He et al. 2010], reduce the
dimensionality of the problem by comparing pixels indirectly by
their relation to a third point. Although its response is not ex-
actly Euclidean, it has successfully been used in applications such
as global-illumination filtering [Bauszat et al. 2011]. The improved
fast Gauss transform [Yang et al. 2003] computes the filter response
as a series expansion around a few clusters. Its high accuracy is
obtained at the expense of long computational times. With the ex-
ception of the guided filter, all these techniques achieve interactive
rates, but are still not fast enough for real-time applications.

3 Adaptive Manifolds

The filtering operation described by Eq. (1) can be greatly accel-
erated by computing the filter’s response at a set of M sampling
points η̂ ∈ S×R and using them to interpolate the filter’s response
at all N pixels p̂i. This approach shows performance gains when
M � N [Paris and Durand 2009; Adams et al. 2009; Adams et al.
2010], and/or the M points η̂ are distributed in a structured way
on some flats (generalized planes) embedded in S×R [Paris and
Durand 2009; Yang et al. 2009; Adams et al. 2010]. We call such
points a structured set of points. In this case, using linear-time fil-
tering approaches [Deriche 1993; Heckbert 1986; Yang et al. 2009]
and the separability of the Gaussian function, the filter’s response
for the M sampling points can be computed in O(dN + dM) time
instead of O(dNM).

Previous approaches build a structured set of points by laying
them onto oriented dS -dimensional flats in S ×R, either axis-
aligned [Paris and Durand 2009; Yang et al. 2009] or with a few
discrete orientations [Adams et al. 2010]. These flats define a tes-
sellation of S×R into cells given by hyperrectangles or simplices,
respectively. To compute the filter’s response for the original pixels,
one then performs multi-linear or barycentric interpolation. Since
the signal being filtered is rarely a linear manifold, as dR increases,
one needs more flats to enclose the original pixels p̂i into cells.
Furthermore, many of the defined cells will not contain any pixels,

and thus any work performed on them is wasted. While this can
be avoided using representations such as hash tables [Adams et al.
2010], this makes the algorithm’s cost quadratic in the dimensional-
ity d, and its implementation less parallelizable, specially on GPUs.
Kd-trees [Adams et al. 2009] can also be used to reduce the amount
of wasted work. But in this case, Eq. (1) has to be evaluated using
nearest-neighbor queries, which generates significant overhead to
the algorithm, making its cost superlinear in the number of pixels.

Our approach computes a structured set of sampling points adapted
to the signal. This is done by laying the sampling points on non-
linear dS -dimensional manifolds adapted specifically to each sig-
nal and constructed considering the spatial standard deviations of
the high-dimensional filter. To obtain a good approximation for
Eq. (1), we show (Appendix A) that it is sufficient for such man-
ifolds to be only approximately linear in all local neighborhoods.
The filter’s response is computed using a normalized convolution
interpolator [Knutsson and Westin 1993]. The benefits of our ap-
proach are:

1. One can sample the high-dimensional space at scattered loca-
tions (on the manifolds), without having to worry about enclos-
ing pixels into cells to perform multi-linear or barycentric in-
terpolation. This is a key factor for the performance of our
method and results from the use of normalized convolution;

2. Computation is performed only where it is needed. We ob-
tain this by adapting the manifolds (and, in turn, the sampling
points) to each specific signal;

3. The filter response can be computed in linear time. This
is possible since the sampling points are structured on dS -
dimensional manifolds;

4. The number of manifolds required to compute the filter’s re-
sponse is independent of the dimension, d, of the space in which
the filter operates. As the manifolds are dS -dimensional, they
adapt to the signal equally well, regardless of dR.

Thus, our filter is the first high-dimensional filter with linear cost
both in the number of pixels N and in dimensionality d (Sec-
tion 6.1). Furthermore, its implementation is faster and requires
less memory than previous approaches. Figure 2(a) illustrates our
approach for a 1-D signal (dS = dR = 1). Our adaptive mani-
folds (dashed lines) adjust themselves to the underlying signal (in
blue) in high-dimensional space (in Figure 2(a), d = 2). This de-
fines pathways to exchange information among pixels with similar
range values. In contrast, the linear manifolds shown in (b) do not
represent well certain regions of the signal (black arrow), while per-
forming unnecessary work in other regions (in red). The occurrence
of these issues tend to increase with the dimensionality ofR.

3.1 Euclidean Filtering Using Adaptive Manifolds

The steps for computing Eq. (1) using our nonlinear adaptive mani-
folds are illustrated in Figure 3 for a 1-D signal. To help the readers
establish an analogy and compare it with other approaches (e.g.,
the Gaussian kd-trees, the permutohedral lattice, and the 5-D bilat-
eral grid), we use the terminology adopted by Adams et al. [2009;
2010]. Furthermore, to simplify the exposition, this section presents
the final form of our equations. Please refer to Appendix A for their
derivations.

Let K be the total number of adaptive manifolds that will be used
to filter a signal f (Section 5.1 shows how to compute this number).
Each pixel pi ∈ S has an associated sampling point η̂ki ∈ S×R
which lies on the k-th adaptive manifold. The point η̂ki has the
same spatial coordinates of pi, but its range coordinates are given
by ηki ∈ R (note the absence of the hat ‘ˆ’). Thus, η̂ki = (pi, ηki).
Section 4 discusses how the range coordinates ηki are computed.

Adaptive Manifolds for Real-Time High-Dimensional Filtering        •        33:3
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Figure 3: Steps of our adaptive-manifold filter (in 1-D), using the terminology from Adams et al. [2009; 2010]. (a) Splatting performs a
distance-weighted projection of the colors fi onto each adaptive manifold. (b) Blurring performs Gaussian filtering over each manifold,
mixing the distance-weighted projections from all pixels. (c) Slicing computes the filter response for each pixel using normalized convolution.

The three steps of our filter are: splatting, blurring, and slicing.
Splatting performs a Gaussian distance-weighted projection of the
colors fi of all pixels pi onto each adaptive manifold (Figure 3(a)).
The projected values are stored at the sampling points η̂ki associ-
ated with pi:

Ψsplat(η̂ki) = φΣR
2

(ηki − fi) fi. (3)

ΣR is the dR × dR diagonal covariance matrix which controls the
decay of the Gaussian kernel φ in the dimensions of R. The need
for scaling ΣR by 1/2 is explained in Appendix A.

Blurring performs Gaussian filtering over each adaptive manifold,
mixing the splatted values Ψsplat from all sampling points η̂ki (Fig-
ure 3(b)). This results in a new value Ψblur(η̂ki) stored at each η̂ki.
Distances for this filtering process on the manifolds are computed
taking into account the manifold’s curvature in a scaled version of
the space S×R. This scaling maps the (possibly) anisotropic, axis-
aligned Gaussian onto an isotropic Gaussian with identity covari-
ance matrix. This is a common operation when implementing high-
dimensional filters [Chen et al. 2007; Adams et al. 2010; Gastal and
Oliveira 2011].

Slicing computes the final filter response gi for each pixel pi by
interpolating blurred values Ψblur gathered from all adaptive man-
ifolds (Figure 3(c)). We gather from the same sampling points η̂ki
used for splatting pi (Figure 3(a)). Interpolation is done with nor-
malized convolution, described by Knutsson and Westin [1993] in
the context of missing data. gi is then computed using nearby val-
ues known at positions η̂ki:

gi =

∑K
k=1 wki Ψblur(η̂ki)∑K
k=1 wki Ψ0

blur(η̂ki)
, wki = φΣR

2

(ηki − fi). (4)

The value Ψ0
blur is the blurred version of Ψ0

splat:

Ψ0
splat(η̂ki) = φΣR

2

(ηki − fi). (5)

Contrast Ψ0
splat from Eq. (5) with Ψsplat from Eq. (3), and note the

absence of the color fi on the far right of Ψ0
splat. �

Appendix A provides a detailed derivation of these equations and
shows that this process indeed approximates the brute-force eval-
uation of Eq. (1). Next, we discuss how to compute the sampling
points η̂ki = (pi, ηki) that define the adaptive manifolds.

4 Computing Adaptive Manifolds

The k-th dS -dimensional adaptive manifold (embedded in S×R) is
represented by a graph (pi, ηki). The manifold value ηki ∈ R as-
sociated with pixel pi ∈ S is defined by the evaluation of a function
ηk : S → R at pi: ηki = ηk(pi). Algorithm 1 generates manifolds
(i.e., functions ηk) with the following properties:

• They are approximately linear in all local neighborhoods. As
we show in Appendix A, this is required to obtain a good ap-
proximation for Eq. (1) for all pixels in O(dNK) time;

• They approximate the input signal in the high-dimensional
space. This maximizes the number of sampling points with sig-
nificant interpolation weights wki in Eq. (4), producing good
estimates for Eq. (1). It also reduces bias, as most pixels are
well represented by the manifolds (see Section 5 for a discus-
sion on outliers).

The idea behind obtaining manifolds with these properties is to lo-
cally average pixel values from the input signal. Since the sam-
ple mean is a good estimator for the population mean, these av-
erages are good representatives of their corresponding neighbor-
hoods. Furthermore, since local averages define a low-pass filter,
the resulting manifolds are guaranteed to be approximately linear
in all local neighborhoods (see the discussion at the end of this
section). However, close to an edge, the local average will not
be a good neighborhood representative. At these locations, one
needs more than one mean estimate to represent the local mixture
of two (or more) populations. For this reason, we use a hierarchical
segmentation approach to iteratively separate pixels from different
populations into different clusters. Averaging values only from pix-
els belonging to the same cluster generates better estimates for the
local population means.

An algorithm for creating adaptive manifolds for an input signal f
can be summarized as follows:

Step 1: Generate the first manifold, η1, by low-pass filtering the
input signal: η1(pi) = (hΣS ∗ f)(pi), where ∗ is convolution, and
hΣS is a low-pass filter in S with covariance matrix ΣS . Recall
that ΣS is a dS × dS diagonal matrix that controls the decay of the
Gaussian kernel φ in the S dimensions.

Step 2: Compute the direction v1 ∈ RdR that summarizes the
variations of pixel colors fi about the manifold η1. Direction v1

corresponds to the eigenvector associated with the largest eigen-
value of the covariance matrix (f1 − η1)(f1 − η1)T , where f1 =
(f1 . . . fN ) is a dR × N matrix containing all pixel colors fi, and
η1 = (η11 . . . η1N ) is a dR × N matrix containing all manifold
values η1i associated with each pixel pi. Appendix B shows how to
approximate v1 efficiently in O(dRN) time.

Step 3: Segment the pixels into two clusters C− and C+ using the
sign of the dot product dot = vT1 (fi − η1i):{

pi ∈ C− if dot < 0,
pi ∈ C+ otherwise.

(6)

This can be intuitively understood as segmenting the pixels of the
input signal into two subsets: one that is locally above the manifold
and another that is locally below the manifold. This defines two
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Figure 4: Manifold tree constructed using Algorithm 1.
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Figure 5: The manifolds used by our filter to compute Figure 8(b).

distinct populations. Note that this is just an intuition, since above
and below are only defined for flats with dimension (d− 1) in Rd.

Step 4: Compute a new manifold η− by (weighted) low-pass filter-
ing the input signal, giving weight zero to pixels not in C−:

η−(pi) =

N∑
pj∈C−

W−(pj) fj

/
N∑

pj∈C−

W−(pj),

W−(pj) = θ(η1j − fj)hΣS (pi − pj).

(7)

hΣS is the low-pass filter used to generate η1, and θ is a function
that gives more weight to pixels pj not well represented by the man-
ifold η1:

θ(η1j − fj) = 1− w1j . (8)

The valuesw1j are the interpolation weights from Eq. (4). The con-
struction of the manifold η+ associated with C+ is done similarly.

Step 5: Based on the stopping criterion discussed in Section 5.1,
decide whether more manifolds are needed. If yes, recursively re-
peat Step 2, replacing every occurrence of η1 with η−, and only
using pixels pi ∈ C− to build the matrices f− and η−, and clusters
C−− and C−+. Do the same for η+ using pixels pi ∈ C+. �

These steps are shown in Algorithm 1, and define manifolds in a hi-
erarchical tree (Figure 4). Going further down this tree yields man-
ifolds better adapted to local populations: each cluster will contain
fewer and more correlated pixels, and Eq. (7) will perform more
robust local mean estimates. Figure 5 shows the first three levels of
the manifold tree computed to filter the image in Figure 8(a).

Low-Pass Filtering Appendix A shows that a good approxima-
tion for Eq. (1) can be obtained using nonlinear manifolds if they
are approximately linear in all local neighborhoods. Although not
true in general, for natural images such approximately-linear man-
ifolds can always be obtained by applying a low-pass filter h to the
original pixels, and by making the standard deviation of this fil-
ter adequately large (see supplementary materials). According to
our experience, using (in Steps 1 and 4 of our algorithm) a low-
pass filter hΣS with covariance matrix given by ΣS (i.e., the spatial
variance of φΣ) produces adaptive manifolds which are sufficiently
linear (according to Proposition A.2 in Appendix A) and generate
good filtering results. Section 6 discusses implementation details
for this low-pass filter.

Algorithm 1 Computing the Adaptive Manifolds

η1 ← hΣS ∗ f (∗ First manifold ∗)
C1 ← {p1, . . . , pN} (∗ First pixel cluster contains all pixels ∗)
return {η1} ∪ build manifolds(η1, C1)

function build manifolds(ηk, Ck)

(∗ Build two pixel clusters by a segmentation ofR ∗)
Build matrices fk, ηk only using pixels in Ck
Find largest eigenvector v1 of matrix (fk − ηk)(fk − ηk)T

C− ← ∅; C+ ← ∅;
for all pixels pi ∈ Ck do

(∗ Use a dot product for segmentation ∗)
if vT1 (fi − ηki) < 0 then
C− ← C− ∪ {pi}

else
C+ ← C+ ∪ {pi}

end if
end for
(∗ Build new manifolds ∗)
Compute η− and η+ using Eq. (7)
(∗ Recurse if more manifolds are needed ∗)
M− ← {η−}; M+ ← {η+};
if stopping criterion not reached (Section 5.1) then
M− ←M− ∪ build manifolds(η−, C−)
M+ ←M+ ∪ build manifolds(η+, C+)

end if
(∗ Return the set of all constructed manifolds ∗)
returnM− ∪M+

end function

5 Filter Behavior Analysis

It is instructive to analyze the behavior of our filter by contrasting its
response to the response of the brute-force filter defined by Eq. (1),
in the presence of outliers. Outlier pixels have rangeR coordinates
very different from the ones of their neighbors in the spatial domain
S. Given an outlier pixel pi, the filter defined by Eq. (1) preserves
its colors fi (i.e., gi = fi), since pi has no neighbors in the high-
dimensional space S×R. This is different from the result obtained
with Eq. (4), which suppresses contributions from outliers. To un-
derstand the source of this suppressive property, recall that outliers
do not fit the local population and thus, the adaptive manifolds gen-
erated by Algorithm 1 do not represent them well. As a result, the
values of their colors fi are highly attenuated during their projec-
tions onto the manifolds (Eq. (3), illustrated in Figure 3(a)).

One can handle outlier pixels in two ways: accept the values com-
puted by Eq. (4), or change the filtered values to better approxi-
mate the response of Eq. (1). The first alternative forces outliers
to behave like their neighborhoods, thus, as discussed above, sup-
pressing their influence in the filtered signal. This is desirable for
some applications, such as denoising. Figure 12 shows an example
where our approach was used to implement a non-local-means fil-
ter [Buades et al. 2005]. Note how the resulting filter (c) is slightly
more aggressive in reducing noise than a conventional non-local-
means filter (d). While algorithms designed specifically for denois-
ing [Dabov et al. 2007] are expected to produce better results than
non-local means, they tend to be slow. Thus, performing non-local-
means denoising with our approach offers a good alternative for
interactive applications.

The second alternative adjusts the response of Eq. (4) to better
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approximate the response of Eq. (1), which preserves the colors fi
from outliers. (i.e., gi = fi). Since outlier pixels are far away from
all manifolds, this adjustment is performed as

gi = αi g̃i + (1− αi) fi, αi = maxk
(
φΣ(p̂i − η̂ki)

)
; (9)

where g̃i is the result of Eq. (4) for pixel pi, and αi is the maximum
kernel response for the distance of pixel pi to its associated sam-
pling point on all manifolds. Since αi ∈ [0, 1] (recall that the peak
of the Gaussian φΣ in Eq. (2) is 1), gi becomes a linear interpola-
tion of g̃i and fi. For an outlier pixel, αi ≈ 0 and gi ≈ fi, while
for a non-outlier pixel, αi ≈ 1 and gi ≈ g̃i.

5.1 Stopping Criteria

According to Proposition A.2 (Appendix A), the size of the neigh-
borhood where the manifolds should be approximately linear is
proportional to the standard deviations of the filter in S (i.e., the
square-root of the values in ΣS ), which are parameters of the fil-
ter. As these values increase, the manifolds slowly become flats
in S ×R, and, in turn, become less adapted to the signal. This
means that more manifolds will be needed to accurately represent
the pixel population when the spatial standard deviation of the filter
is large. Furthermore, when the values in ΣR increase, the interpo-
lation weight wki given by each pixel pi to its associated sampling
point η̂ki on the k-th manifold (Eq. (4)) also increases. This means
that fewer manifolds will be needed to estimate Eq. (1) with good
accuracy when the range standard deviation of the filter is large.

With these guidelines in mind, the next paragraphs discuss how to
select the number of manifolds (K) for different applications. This
custom selection provides optimal control over the filter based on
properties such as expected outlier behavior and performance goals.
We discuss how to compute the height H of the manifold tree (Fig-
ure 4), from which K can be obtained as K = 2H − 1.

For RGB color image filtering, the tree height is computed as

H = max
(
2,
⌈
HS LR

⌉)
, (10)

where HS is a height computed from the spatial standard deviation
of the filter, and LR is a linear correction computed from the range
standard deviation: HS = blog2 (σSmax)c−1, LR = 1−σRmin .
The standard deviations σSmax and σRmin are given by

σSmax =
√

max (ΣS), and σRmin =
√

min (ΣR). (11)

One can verify that these equations follow the guidelines from the
beginning of this section. The supplementary materials present a
table computed for various combinations of values for σSmax and
σRmin . Using the tree height given by Eq. (10) and treating out-
liers according to Eq. (9), one achieves good accuracy against brute-
force bilateral filtering: average PSNR above 40 dB for most com-
binations of σs and σr parameters (Table 1). Towards the bottom-
right of Table 1, the adaptive-manifold filter’s results diverge from
the bilateral filter’s results due to our choice of low-pass filter over
the manifolds (RF filter of Gastal and Oliveira [2010], discussed in
Section 6), which is not Gaussian, but approximates it. For combi-
nations of large values for both σs and σr (bottom-right portion of
Table 1), the adaptive-manifold filter behaves more like a low-pass
filter than as an edge-preserving one. A similar behavior is also
observed for the bilateral filter (Figure 6). The supplementary ma-
terials provide extensive comparisons of the impact, on the filtered
images, of varying the values of the parameters σs and σr .

For natural image denoising using the non-local-means algo-
rithm [Buades et al. 2005], more manifolds are required to deal with
the noisy data. Good results are achieved with a small increment to
the tree height used for color bilateral filtering:

σs
1 4 8 16 32 64 128

σ
r

0.01 57.8 52.7 51.2 50.9 50.6 50.4 50.3
0.05 50.7 44.8 42.5 43.3 43.6 43.5 43.3
0.10 47.9 43.7 41.1 41.7 42.1 41.6 40.6
0.15 46.3 43.8 41.2 40.8 41.4 40.4 39.2
0.20 45.3 44.1 41.6 40.2 41.0 39.4 38.0
0.40 43.0 44.5 42.1 40.1 38.6 37.3 36.5
0.60 41.8 43.7 41.7 40.1 39.0 37.4 35.5
1.00 40.8 42.4 41.1 39.7 38.8 37.2 35.1

Table 1: Mean PSNR of the adaptive-manifold filter (computed
with respect to brute-force RGB color bilateral filtering) for various
combinations of σs and σr values. The mean values were obtained
from a set of 24 images (included in the supplementary materials).
The number of manifolds, K, was computed using the tree height
given by Eq. (10). Section 7 defines the parameters σs and σr .

H = 2 + max
(
2,
⌈
HS LR

⌉)
. (12)

Note that the number of manifolds is independent of the filter di-
mensionality. In our tests, we achieve consistent results by using
the same tree height (Eq. (12)) for denoising in dimensions from 6
to 147 (Figure 12). Finally, since outliers will be mostly noise, they
should be suppressed (i.e., do not use Eq. (9)).

For global illumination filtering one can play with the number of
manifolds to trade off performance and quality. This is specially
useful in games and other real-time applications. In this case, out-
liers should also be suppressed. Figure 1 and Figure 14 show an
example of noise reduction applied to an image rendered using path
tracing, which will be discussed in Section 8.

For other applications, the number of manifolds can be dynami-
cally computed. A simple and effective approach would be to tra-
verse the manifold tree (Figure 4) breadth-first and stop generating
manifolds when a high-percentage of pixels are within close range
to at least one manifold. We define close as having a Mahalanobis
distance ‖p̂i− η̂ki‖Σ less than 1. This is equivalent to being within
the range of 1-sigma in an isotropic Gaussian kernel. The pixels
outside this range are considered outliers in the pixel color distribu-
tion, and should be treated as discussed in Section 5 in accordance
with the desired filter response.

6 Implementation Details

For the low-pass filter hΣS used to compute the adaptive manifolds
ηk, we use a linear-time recursive filter with exponential decay:

out[i] = in[i] + exp
(
−
√

2
/
σl
)

(in[i− 1]− in[i]) . (13)

This 1-D filter is applied along each S dimension of the signal being
filtered. Since its impulse response is not symmetric, it must be ap-
plied twice (once in each direction). For example, in a 2-D image,
Eq. (13) is performed left-to-right and then right-to-left for the hor-
izontal dimension. The value σl is the square root of the variance
at the diagonal position (l, l) of matrix ΣS , where l = 1, . . . , dS is
the current S dimension being filtered. Furthermore, since the sam-
ples ηki of the k-th adaptive manifold are computed applying the
low-pass filter hΣS to an already band-limited signal (the discrete
input f in Eq. (7)), they define an “even more” band-limited signal.
Thus, one can correctly represent the set {ηki} using fewer than N
samples. For the filter in Eq. (13), one can use min(N, 4N/σl)
samples (see the supplementary materials for the derivation of this
bound).
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σs=16, σr=0.2 σs=16, σr=0.2 σs=64, σr=1.0 σs=64, σr=1.0

(a) Input (b) Ours, PSNR 41 dB (c) Bilateral filter (d) Ours, PSNR 37 dB (e) Bilateral filter

Figure 6: For values of the parameters σs and σr preserving image edges (b and c), the adaptive-manifold (AM) filter obtains results visually
very similar to the bilateral filter (BF). For large values of both σs and σr (d and e — bottom-right portion of Table 1), the AM filter results
diverge from the BF results (lower PSNR) due to our choice of low-pass filter used over the manifolds (see Section 6).

For blurring over each manifold ηk (Figure 3(b)), we use the re-
cursive filter (RF) from Gastal and Oliveira [2011]. This filter uses
a domain transform to isometrically map geodesic curves from the
high-dimensional manifold onto the real line, filtering in linear time
and achieving real-time performance. Although the response of
such a filter for computing Ψblur is exponential instead of Gaus-
sian, we found that results are visually similar and of equal quality.
In fact, such a solution achieves average PSNR above 40 dB against
the brute-force Gaussian bilateral filter for RGB images (Table 1).
If a more Gaussian-like response is needed, one can use iterations of
recursive or box filters [Heckbert 1986; Gastal and Oliveira 2011].

In general, the output of the RF filter is not band-limited. How-
ever, since the filtering process takes place on band-limited mani-
folds (i.e., smooth manifolds), the output of RF will also be band-
limited. Thus, one can safely downsample the signal defined by
Ψsplat before using RF to compute Ψblur , which is then upsam-
pled for slicing. Due to the nonlinear nature of RF, one cannot
find a closed-form expression for the Nyquist sampling rate. Us-
ing min(N,N/r) samples generates good results for color-image
filtering, where r = min (σSmin/4, 256 σRmin), and σSmin and
σRmin are the minimum spatial and range standard deviations.

6.1 Complexity Analysis

Since each pixel appears in a single cluster at each level of
the binary tree in Figure 4, clustering takes O(dN log K) time.
Computing the manifolds using the filter from Eq. (13) takes
O(dN K/σSmin) time , since they are band-limited. Perform-
ing the filtering over all manifolds has a cost of O(dNK +
dNK/σSmin) since splatting (Eq. (3)) is evaluated for all pixels,
and the RF filter is linear-time. Finally, evaluating the summations
in Eq. (4) for all pixels has cost O(dNK). Thus, the total cost of
our filter is O(dNK).

Only one manifold has to be kept in memory at each moment,
since manifolds can be discarded after being used for blurring (Sec-
tion 3.1) and clustering (Section 4). To evaluate the filter, one needs
the following amounts of memory: (i) dRN/σSmin , to store the
current manifold; (ii) (dR + 1)N/σSmin , to store the Ψblur and
Ψ0
blur values for the current manifold; (iii) (dR+ 1)N , to sequen-

tially accumulate Ψblur and Ψ0
blur from all manifolds (scaled by

wki), and perform the final division (Eq. (4)); and (iv) N , to store
the clusters belonging to the current manifold-tree branch.

7 Performance Evaluation

We have implemented three versions of the high-dimensional fil-
ter described in the paper, and tested them on a large number of
images and videos. These implementations include two CPU ver-
sions, one written in C++ and one in MATLAB, and a GPU version
written in CUDA. The performance numbers reported in the paper
were measured on a 3.3 GHz Intel Core i5 2500K processor with
16 GB of memory, and on two GPUs: a GeForce GTX 280 with
1 GB of memory, and a GeForce GTX 580 with 1.5 GB of mem-
ory. All comparisons with other techniques were done on the same
machine, using a single CPU core, and using code provided by the
authors. Furthermore, we adopt the conventional isotropic kernels
in S and R, with standard deviations σs and σr , respectively. In
this case, covariance matrices are obtained as ΣS = σ2

s IdS×dS
and ΣR = σ2

r IdR×dR , where Im×m is them×m identity matrix.
σs is measured in pixels, and σr is measured in normalized units
(e.g., for RGB color filtering, the RGB cube is given by [0, 1]3).

RGB color image filtering on the CPU Computing the num-
ber of manifolds K using Eq. (10), our CPU implementation of the
adaptive-manifold (AM) filter processes a 1-megapixel color im-
age in about 0.2 seconds for a wide range of filtering parameters.
The fastest color bilateral filter currently available is the permuto-
hedral lattice (PL) of Adams et al. [2010]. Figure 7 shows that our
AM filter is 2 to 5× faster than PL for a wide range of filtering
parameters. Furthermore, the AM filter is slightly faster than the
guided filter (GF) of He et al. [2010], while generating results in-
distinguishable from brute-force bilateral filtering (Figure 8). The
guided filter does not compute true 5-D Euclidean distances be-
tween pixels. Instead, it computes their similarity with respect to
a third point (a local average). As a result, GF may introduce arti-
facts in the filtered images (Figure 8(d)). In fact, in some cases, it
completely ignores color differences between pixels (Figure 9).

For a combination of large spatial standard deviations and small
range standard deviations, our filter is slower than PL (Figure 7).
This happens because, in such situations, the manifolds become
linear almost everywhere, loosing their ability to adapt to the signal.
To compensate for this, more manifolds are needed to guarantee
a sufficient number of sampling points with significant integration
weights (see Appendix A), which affects performance. However,
as noted by other researchers [Adams et al. 2009; Farbman et al.
2008], to achieve best results, applications that use Euclidean filters
usually require spatial standard deviations of small to medium sizes.
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Figure 7: CPU performance of our adaptive-manifold (AM) filter
versus the permutohedral lattice (PL) and the guided filter (GF).
The vertical axis shows time, in seconds, to filter a 1-megapixel
color image. The shaded areas represent performance changes
when σr varies from 1 (bottom curve) to 0.05 (top curve).

(a) Photograph (b) Our AM (c) Bilateral (BF) (d) Guided (GF)

Figure 8: Comparison of smoothing quality (best viewed in the
electronic version). Our filter generates results virtually indistin-
guishable from the brute-force bilateral filter (BF). The guided fil-
ter (GF) failed to smooth certain regions of the sky. Results ob-
tained with the permutohedral lattice and Gaussian kd-trees (not
shown) are very similar to ours. Filtering parameters: σs = 16
and σr = 0.2 for our AM and for BF; r = 16 and ε = 0.182 for
GF (chosen to maximize overall visual similarity of the results).

Input

Our Adaptive Manifolds

Permutohedral

Gaussian kd-trees

Brute force bilateral

Guided

Figure 9: Response of filtering the blue impulse in the top image
using small ΣR values and the edges from the grayscale image.
Our filter and bilateral filters preserve discontinuities from the input
signal. The guided filter does not manage to do the same, because
the gray shade is halfway between white and black. Black regions
in the filtered signal indicate gi = 0.

Thus, our filter provides the fastest alternative for the most common
situations.

RGB color image filtering on the GPU Due to the simple and
parallel operations used by our approach, our filter achieves signif-
icant performance gains on GPUs. We implemented our AM filter
using CUDA. On a GTX 280 GPU, the total time required for filter-
ing a 1-megapixel color image ranges from 0.001 to 0.036 seconds
(considering σs ∈ [1, 128], and σr ∈ [0.05, 1.0]). This represents a
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Figure 10: PSNR (with respect to ground-truth) for non-local
means denoising using the adaptive-manifold filter with different
range dimensions, using a fixed number of manifolds (K = 15,
σs = 8, σr = 0.35). Each gray line represents one of the 24
test images. The black dashed line shows the mean PSNR of the de-
noised images (∼26 dB). The mean PSNR for the noisy input images
is ∼14 dB. As noted by Tasdizen [2008], lower dimensions provide
best results for non-local means denoising, which, as can be seen
on the graph, also holds true for the adaptive-manifold filter. Fur-
thermore, for higher dimensionalities, the adaptive-manifold filter
obtains fairly constant denoising performance using the same num-
ber of manifolds, showing its independence of dimensionality.

speedup from 15 to 50× compared to our one-core CPU implemen-
tation. Since a 1-megapixel image is relatively small for a modern
GPU, the performance of our filter scales sub-linearly with image
size. Our approach can filter a 10-megapixel image under 0.04 sec-
onds. Finally, the bottleneck of our GPU implementation are the
recursive filters from Section 6 (i.e., Eq. (13) and the RF filter). Its
performance can be further improved using recent approaches for
GPU recursive filtering [Nehab et al. 2011].

On a GTX 280 1GB GPU, the PL filter has a poor performance
due to the lack of L1 cache and atomic instructions, both of which
are essential for implementing an efficient parallel hash-table. On
this GPU, the PL filter requires from 0.5 to 0.7 seconds to filter a
1-megapixel color image — our AM filter is 10 to 100× faster for
σr < 0.2, or up to 200× faster for σr up to 1. The GPU imple-
mentation of the guided filter by Bauszat et al. [2011] filters a 0.75
megapixel color image in 0.07 sec — our AM filter is 2 to 10×
faster for σr < 0.2, or up to 40× faster for σr up to 1. All cases
consider σs ∈ [1, 128].

On a GTX 580 1.5GB GPU, the PL filter has much improved per-
formance: from 0.05 to 0.1 seconds to filter a 1-megapixel color
image. Our AM filter is 10 to 30× faster for σs ∈ [4, 32], filtering
the same image in 0.001 to 0.007 sec. Considering σs ∈ [1, 128],
our filter is 3 to 50× faster. Furthermore, the AM filter can process
a 10-megapixel image in 0.02 to 0.07 seconds. For images of this
size, PL runs out of memory. GPU performance graphs are shown
in the supplementary materials.

Higher-Dimensional Filters Since the signal f : RdS → RdR
and the adaptive manifolds ηk : RdS → RdR both define dS -
dimensional manifolds in Rd, ηk is able to adapt to f equally well
regardless of the range dimensionality dR. Thus, the number of
manifolds (K) is independent of the dimension of the space in
which the filter operates — that is, the complexity O(dNK) of
the AM filter is linear in both the number of pixels N and dimen-
sionality d, since K is independent of these two values. This inde-
pendence is shown in Figure 10, where the AM filter achieves fairly
constant PSNR for a wide range of dimensionalities using the same
number of manifolds. For the graph shown in Figure 10, K = 15.

The complexity of previous filters are either quasilinear in N or
quadratic in d: O(dNlogN) for the Gaussian kd-trees [Adams
et al. 2009]; O(d2N) for the permutohedral lattice [Adams et al.
2010]; and O(d2.807...

R N) for the guided filter [He et al. 2010],
since it requires the inversion of one dR × dR matrix per pixel. As
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(a) Photograph (b) Our Euclidean filter (c) Geodesic filter

Figure 11: Example of color detail enhancement. Our Euclidean
filter enhances image features differently than a geodesic filter. For
instance, note the colors of the parrots’ eyes. Choosing between the
two results is a subjective choice.

such, our filter scales significantly better with dimensionality and
image size. For example, our C++ CPU implementation of the AM
filter applies non-local-means [Buades et al. 2005] denoising to a
1 megapixel image, using 25 dimensions, in 3.5 seconds (K = 15,
σs = 8, σr = 0.2), while our MATLAB implementation processes
the same image in 23 seconds. The C++ CPU implementation of
the Gaussian kd-trees (accuracy parameter equal to 1) generates a
similar result in 45 seconds, and the C++ CPU implementation of
the permutohedral lattice takes 105 seconds. The guided filter has
no implementation available for dR > 3.

8 Applications

Our high-dimensional filter can provide real-time feedback for sev-
eral applications. Next, we describe a few examples. The supple-
mentary materials include results of our filter applied to videos.

5-D color filters can be used to create several effects for images
and videos. Figure 8 compares the results produced by our 5-D
color filter (b) and the ones generated by a brute-force bilateral fil-
ter (c), and by the guided filter [He et al. 2010]. Note how our
filter smooths the sky, while preserving thin features, such as the
lighthouse’s handrail. For this example, the guided filter failed to
smooth certain parts of the sky, which are highlighted in (d). Fig-
ure 11 compares the use of our Euclidean filter (b) to a geodesic
filter (c) to perform adaptive contrast enhancement without intro-
ducing noticeable haloing artifacts. Such artifacts tend to appear
with the use of standard unsharp masking.

Non-local-means filters for denoising [Buades et al. 2005] work
by averaging pixels which have similar neighborhoods in the image.
The idea is that by using more image features to evaluate the sim-
ilarity between pixels, one can generate more robust estimators for
the noisy input data. This is implemented by replacing the vectors
p̂i from Eq. (1) by the colors of all pixels in a m×m patch around
pi. For an RGB color image, this defines a (3m2 + 2)-D space,
for which a naı̈ve evaluation of Eq. (1) becomes intractable. For
efficiency, one uses PCA to reduce the dimensionality of the result-
ing feature space (R). Tasdizen [2008] has shown that using only 6
main PCA-computed dimensions actually produces better denois-
ing results than working with the full space. Figure 12 illustrates
the use of our approach to implement non-local-means filtering.

Filtering with additional information can help to increase the ro-
bustness of pixel-correlation estimation. For instance, the recent
work of Zhuo et al. [2010] uses an infrared flash to simultaneously
capture a crisp infrared image, and a color image obtained under
low-lighting conditions (and thus, noisy). Figure 13(a-b) show an
infrared-color pair from [Zhuo et al. 2010]. Note the noisy color im-
age (b). Using the non-local-means algorithm (in 6-D) on the color

data results in noise reduction, but introduces blur (see the horse
head on the back of the book in (c)). By incorporating the infrared
data as an extra dimension, our filter achieves optimal denoising
results for this scene, as shown in (d). The original algorithm of
Zhuo et al. uses a geodesic filter for denoising (as opposed to a Eu-
clidean filter), and cannot be effectively used with high-dimensional
spaces. Their result exhibits blurring in many regions of the image,
such as in the text on the back of the book in (e).

Ray-traced indirect illumination is increasingly making its way
into interactive and real-time applications. Despite the advances in
algorithms and hardware, sampling all light paths in a scene still re-
quires considerable time. For this reason, modern techniques apply
fast and approximate algorithms to denoise undersampled global
illumination images [Bauszat et al. 2011], with the goal of obtain-
ing visually pleasing, albeit physically incorrect renderings. Our
high-dimensional filter can be effectively used for this task. In
the example in Figure 14, the underlying geometric information of
the scene is used to help filtering noisy indirect illumination, con-
siderably improving the final rendering (Figure 1(a), which uses
K = 7). This 8-D filter only considers pixels pi = (xi, yi) that
are close in the 2-D image, and have similar positions (Xi, Yi, Zi)
and normal vectors (nix, niy, niz) in the 3-D scene. In this case,
p̂i = (xi, yi, Xi, Yi, Zi, nix, niy, niz).

A hybrid Euclidean-geodesic filter uses Euclidean distances for
some dimensions and geodesic distances for others. Let [p̂i]c be
the c-th coordinate of the point p̂i ∈ S×R associated with an input
pixel pi. For each range coordinate c for which one wants to per-
form geodesic filtering, we make [η̂ki]c = [p̂i]c, ∀k ∀pi. For such
dimensions, blurring over the adaptive manifolds ηk is equivalent
to blurring over the original signal’s manifold. Figure 15 shows
one possible application of such a Euclidean-geodesic filter: per-
forming local tonal adjustments [Lischinski et al. 2006] using addi-
tional depth information. In this example, a scribble over the color
image in (a) is used to compute a selection mask for pixels with
similar colors and depth. A pure Euclidean filter causes the mask
to bleed into other statues, as shown in Figure 15(b). On the other
hand, using Euclidean distance for color, and geodesic distance for
depth, the selection mask is constrained to the desired statue (Fig-
ure 15(c)). While this operation could be performed with a two-pass
Euclidean filter for color followed by a geodesic filter for depth (or
vice-versa), the flexibility of our approach supports a single-pass
hybrid Euclidean-geodesic filter.

9 Conclusions and Future Work

We presented an efficient technique for performing high-
dimensional filtering of images and videos in real time. Our filter
produces high-quality results and is the first high-dimensional filter
with linear cost both in the number of pixels and in the dimension
of the space in which the filter operates. We presented a formal
derivation for the equations that define the filter, providing a theo-
retical justification for our method and for its properties. Our filter
is faster and requires less memory than previous approaches, being
able to process a 10-Megapixel full-color image at 50 fps on mod-
ern GPUs. We have also demonstrated the first hybrid Euclidean-
geodesic filter that runs in a single pass. We illustrated the effec-
tiveness of our approach performing a variety of image processing
tasks such as edge-aware color filtering in 5-D, noise reduction (in
27-D and in 147-D), and detail enhancement.

Our filter (Eq. (4)) is essentially querying the value of a multivariate
function by interpolating several scattered points using normalized
convolution. Thus, one could replace the Gaussian kernel with any
kernel with compact support to get a new kind of filter. It is not
clear, however, how to extend our approach to Gaussian functions
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(a) Photograph (b) Noise std. dev. 0.2 (c) Our filter (147-D) (d) Our filter (6-D) (e) Brute force (6-D)

PSNR 14.7 dB PSNR 27.5 dB PSNR 28.3 dB PSNR 26.8 dB

Figure 12: Example of non-local means denoising using our filter. For (c) the patch space of 7×7 RGB pixel colors was used in full, resulting
in a 147-D space (PCA was not applied). For (d) the space was reduced to 6-D using PCA, as suggested by Tasdizen [2008]. Our filter works
on both 147-D and 6-D using the same number of manifolds K = 15 (and σs = 8, σr = 0.35). When compared to a brute-force evaluation
of Eq. (1) shown in (e), our filter is slightly more aggressive in reducing noise, due to its outlier-suppression property.

(a) Infrared (IR) (b) Photograph (color) (c) Ours 6-D color (d) Ours 6-D color + 1-D IR (e) Zhuo et al. color + IR

Figure 13: Example of denoising using additional information from an infrared-color image pair (a) and (b). Using non-local-means on the
color data (7× 7-pixel patches, reduced to 6-D) reduces noise but introduces blur (c). By using the infrared data as an extra dimension, our
filter achieves optimal denoising for the scene (d). The original algorithm of Zhuo et al. [2010] uses a geodesic filter for denoising, which
does not work effectively for higher dimensions. Their result exhibits blurring in regions such as in the text on back of the books (e).

with non-diagonal covariance matrices.

One could accelerate the worst-case performance of our filter (large
spatial standard deviation) using a Monte Carlo sampling approach:
we do not have to project every pixel on the manifolds since the dif-
fusion (term φ1

(
BTPk ξkij

)
in Eq. (20)) will blend almost everyone.

Thus, it should suffice to just project a subset of the samples.

Limitations When the range standard deviations are small and
the number of manifoldsK is not adequate (too small), quantization
artifacts may appear. These artifacts can be completely removed
using some image-space edge-aware filtering approach [Gastal and
Oliveira 2011]. For applications such as tone mapping, Euclidean
filters may introduce artifacts due to edge-sharpening [Farbman
et al. 2008]. However, recent gradient-restoration approaches [Yang
et al. 2011] can fix this problem in real-time.
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A Formal Derivation of Our Approach

A d-dimensional unit-height Gaussian function can be expressed as
the convolution of two d-dimensional Gaussian functions:

φΣa+Σb (t) = C

∫
Rd
φΣa (t− τ) φΣb (τ) dτ, (14)

where C is a normalization factor. Let t = x − y, τ = η − y, and
Σa = Σb. Eq. (14) can then be rewritten as:

φΣ(x− y) =
1

|Σ|1/2

(
2

π

)d
2
∫
Rd
φΣ

2
(x− η) φΣ

2
(η − y) dη,

(15)
where |Σ| is the determinant of the covariance matrix Σ.

Since the Gaussian function is separable over orthogonal directions:

φΣ(p̂i − p̂j) = φΣS (pi − pj) φΣR (fi − fj) , (16)

where ΣS and ΣR are the diagonal submatrices of Σ associated
with the spatial and range dimensions, respectively. The Gaus-
sian over the range R in Eq. (16) can be rewritten using Eq. (15)
and evaluated numerically (using an approximation to the Gauss-
Hermite quadrature rule – see Section A.2) as a weighted sum:

φΣR (fi − fj) ∝
∫
RdR

φΣR
2

(fi − η)φΣR
2

(η − fj) dη

≈
K∑
k=1

wki φΣR
2

(ηki − fj) .
(17)

The scaling factor outside the integral was not included as it will
cancel out in the division performed in Eq. (1). The K points
ηki ∈ RdR are the locations where the integrand is sampled, and
each pixel pi has its own sampling set {η1i, . . . , ηKi}. In practice,
K will be the number of adaptive manifolds, and each pixel pi has
exactly one sampling point ηki on the k-th adaptive manifold. In-
creasing the number of sampling points (i.e., increasing K) gives a
better approximation for the integral. The integration weights wki
are discussed in Section A.2. We can substitute Eq. (16) and (17)
in the numerator of Eq. (1):∑

pj∈S

φΣ(p̂i − p̂j) fj (18-a)

∝∼
∑
pj∈S

[
φΣS (pi − pj)

K∑
k=1

wki φΣR
2

(ηki − fj)

]
fj (18-b)

=

K∑
k=1

wki
∑
pj∈S

φΣS (pi − pj) φΣR
2

(ηki − fj) fj , (18-c)

where “∝∼” is the approximately proportional relation. Eq. (18-c)
was obtained by reordering the summations. The expression for the
denominator of Eq. (1) is similar, not including the last term fj .

Key observation: by a suitable choice of sampling points {ηki},
the inner summation from Eq. (18-c) can be computed in O(dN)
time for all N pixels pi. This makes the total cost of Gaussian
filtering all pixels O(dNK). Next, we show how to choose {ηki}.
All our results were produced with K � N .

A.1 Choosing the Set of Sampling Points {ηki}

Let η̂ki = (pi, ηki) be the d-dimensional vector whose coordinates
are the concatenation of the (S) coordinates pi and the (R) coordi-
nates ηki. Using the separability property of the Gaussian to com-
bine the product of φΣS and φΣR/2 into a single Gaussian φΣη ,
the inner summation in Eq. (18-c) can then be rewritten as

Ψblur(η̂ki) =
∑
pj∈S

φΣη (η̂ki − p̂j) fj , Ση =

[
ΣS

ΣR /2

]
,

(19)
where p̂j = (pj , fj). Note that Ψblur defines a Gaussian filtering
(a convolution) on a d-dimensional space.

Proposition A.1: For each k = 1 . . .K, if the set {η̂ki} lies
on a dS -dimensional flat (a generalized plane) Pk in d-dimensional
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space, then Ψblur(η̂ki) can be computed, for all η̂ki, by a Gaussian
filtering over Pk . In other words, Ψblur can be computed as a
Gaussian convolution on a dS -dimensional space.

Proof. Let BPk = (b1 . . . bdS ) be any orthonormal basis that
spans the flat Pk. Also, let B⊥Pk = (bdS+1 . . . bd) be any or-
thonormal basis which is also orthonormal to BPk . Together, BPk
and B⊥Pk form an orthonormal basis for Rd. Thus, since the Gaus-
sian function is separable in any orthonormal basis, Eq. (19) can be
rewritten as

Ψblur(η̂ki) =
∑
pj∈S

φ1

(
BTPk ξkij

)
φ1

(
B⊥

T
Pk

ξkij
)
fj︸ ︷︷ ︸

Ψ
Pk
splat(η̂kj)

, (20)

where ξkij = Σ−1/2
η (η̂ki − p̂j). This decomposition defines a

Gaussian filtering of the term Ψ
Pk
splat in Eq. (20) over the flat Pk,

and corresponds to the blurring step in Figure 3 (b). �

The term Ψ
Pk
splat(η̂kj) computes a Gaussian distance-weighting

of fj , and corresponds to the splatting operation (Figure 3(a)),
modeled by Eq. (3). Eq. (18-c) can be re-written as∑K
k=1 wki Ψblur(η̂ki). This is, after the normalization defined in

Eq. (1), the slicing operation (Figure 3(c)) modeled by Eq. (4).

The subscript ‘1’ in φ1 (Eq. (20)) indicates that its covariance ma-
trix in Eq. (2) is an identity matrix, and can be disregarded. The
product BT ξkij computes the projection of vector ξkij ∈ Rd

onto the basis vector B. The scaling matrix Σ−1/2
η transforms an

anisotropic, axis-aligned Gaussian onto an isotropic Gaussian with
identity covariance matrix. This scaling is common in implemen-
tations of high-dimensional filters [Chen et al. 2007; Adams et al.
2010; Gastal and Oliveira 2011].

Proposition A.2: For each k = 1 . . .K, if the set {η̂ki} lies
on a dS -dimensional manifold Mk in d-dimensional space, and if
Mk is approximately linear in all local neighborhoods of S, then
Ψblur(η̂ki) can be approximated, for all η̂ki, by a Gaussian filtering
over Mk.

Proof. Due to the compactness of the Gaussian function, over
99% of the value fi of pixel pi is “diffused” to pixels pj whose
Mahalanobis distance in space

‖pj − pi‖ΣS =
√

(pj − pi)T Σ−1
S (pj − pi)

is less than 3. Thus, by Proposition A.1, if the manifold Mk is
approximately linear in a neighborhood of size 3 around each pixel
pi, Ψblur(η̂ki) can be well approximated for all η̂ki by a Gaussian
filtering over Mk. �

Splatting the pixel colors onto the manifold Mk has cost O(dR)
(the supplementary materials present further discussion on this). Fi-
nally, approaches for performing filtering over manifolds [Sochen
et al. 2001] include methods which work in O(dN) time for N
d-dimensional points [Criminisi et al. 2010; Gastal and Oliveira
2011]. Thus, since our selection of sampling set {η̂ki} lies on the
manifold Mk, the value Ψblur(η̂ki) can be computed for all η̂ki in
O(dN) time.

A.2 Approximate Gauss-Hermite Quadrature

The Gauss-Hermite quadrature rule [NIST 2011] defines the fol-
lowing approximation for a Gaussian integral:∫

R
φΣa (y − x) φΣb (x− z) dx ≈

K∑
k=1

wk φΣb (xk − z) , (21)

where xk are the roots of the Hermite polynomial
HK(y − x), and the weights wk are approximately Gaus-
sian: wk ≈ sK φΣa(y − xk), for some constant scaling factor sK .
This rule can be easily extended to the multidimensional integral
in Eq. (17) by successive applications [Arasaratnam et al. 2007].
According to this rule, the integral in Eq. (17) can be computed
exactly by a weighted sum if the sampling set {ηki} coincides with
the roots ofHK(fi−η), and also if the Gaussian φΣR/2(ηki−fj)
is well interpolated by a polynomial of degree at most 2K − 1
(which is not a big problem since the Gaussian is smooth and has,
practically, compact support).

For each pi, the sampling set {ηki} computed in Section 4 does
not coincide with the roots of HK(fi − η). Otherwise, the mani-
folds would be an exact copy of the original signal, and this would
break the approximate linearity (among samples ηki from the k-th
manifold) required by Proposition A.2, strongly impacting the per-
formance of our method. Nonetheless, one can still approximate
the integral in Eq. (17) using a Gaussian weighting function eval-
uated at {ηki}. The error introduced by this approach is expected
to be small for a few reasons: (i) by using Gaussian weights one
is still respecting how much each sample should contribute to the
integral, according to the quadrature rule from Eq. (21); (ii) for
non-outlier pixels, the set {ηki} computed in Section 4 provides a
sampling of R with a density similar to the roots of HK(fi − η)
— i.e., denser in regions close to fi ∈ R; (iii) the integrand in
Eq. (17) is given by smooth Gaussian functions; and (iv) Eq. (1)
defines a Gauss transform in homogeneous coordinates, which (as
discussed by Adams [2011]) hides scaling errors in the division by
the sum of the weights.

From Eq. (18-c), Eq. (19), and Eq. (21), it follows that the estimator
for the filtered value of a pixel is given by Eq. (4), which defines a
normalized convolution interpolator [Knutsson and Westin 1993].

B Fast Eigenvector Computation

Proposition A.3: The eigenvector v1 associated with the largest
eigenvalue of the dR×dR matrix XXT , where X = fk−ηk, can
be approximated in O(mdRN) time using an iterative algorithm
with m iterations. This avoids the O(d2

RN) cost of computing the
matrix XXT , which is very desirable when m� dR.

Proof. It can be easily proven that limm→∞(XXT )mw ∝ v1 for
a random vector w which is not orthogonal to v1 (see supplemen-
tary materials). Thus, since matrix multiplication is associative,

(XXT )mw = (XXT. . . XXT )︸ ︷︷ ︸
m termsXXT

w = (X(XT. . . (X (XTw)︸ ︷︷ ︸
(a)

) . . .)),

where the term (a) is a O(dRN) matrix-vector multiplication
which results in a vector. Repeating this multiplication until all
terms XXT are exhausted yields a (non-normalized) vector which
approximates v1. The total time complexity is O(2mdRN). �

In our experience m = 1 generates great results for color bilateral
filtering (dR = 3) and for non-local-means denoising (dR = 6),
while m = 2 to 3 is best for dR > 20. Such a low number of iter-
ations is possible since this algorithm converges quickly when the
data inX is highly anisotropic (i.e., some eigenvalues are consider-
ably larger than the others). When the data is more isotropic, pixels
are evenly distributed around the manifolds, and thus any vector v1

will provide a good segmentation for Step 3 of our manifold cre-
ation process (Section 4). Finally, when filtering video sequences
frame-by-frame, one should set the vector w used to filter the t-th
frame equal to v1 from the previous (t − 1)-th frame, to preserve
temporal coherency. The first frame is filtered using a random w.
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